
?.

'- 4
. . b *

8

Report No. UIUCDCS-R-87-1807 UILU-ENG 87 1780

Scheduling Periodic Jobs Using Imprecise Results
i

by

Jen-Yao Chung
Jane W. S. Liu
Kwei-Jay Lin

November 30, 1987

(NASA-Ca-183120) S C H E D U L I N G P E R I O D I C J O B S ~ a 9 - 2 6 7 6 7

3 3 P
USING IMPRECISE RLSUL'IS (i l l i n o i s Univ.)

CSCL 3 5 B
Unclas

G3/81 02 17512

1 .
*-

I
02

Report No. UIUCDCS-R-87-1307

Scheduling Periodic Jobs Using Imprecise Results

Jen-Yao Chung
Jane W. S. Liu
Kwei-Jay Lin

, .

November 30, 1987

ACKNOWLEDGEMENT

We would like to thank M i . Swaminathan Natarajan for his contribution in the work on the

model of imprecise computations and system support for processes to return imprecise results.

This work was partially supported by the NASA Contract No. NAG 1-613 and the US

Navy ONFt Contract No. Nvy NO0014 87-K-0827.

- I -

ABSTRACT

One approach to avoid timing faults in hard, real-time systems is to make available

intermediate, imprecise results produced by real-time processes. When a result of the desired

quality cannot be produced in time, an imprecise result of acceptable quality produced before%he

deadline can be used. This paper discusses the problem of scheduling periodic jobs to meet

deadlines on a system that provides the necessary programming language primitives and run-

time support for processes to return imprecise results. Since the scheduler may choose to

terminate a task before it is completed, causing i t to produce an acceptable but imprecise result,

the amount of processor time assigned to any task in a valid schedule can be less than the

amount of time required to complete the task. A meaningful formulation of the scheduling

problem must take into account the overall quality of the results. Depending on the different

types of undesirable effects caused by errors, jobs are classified as type N or type C. For type N

jobs, the effects of errors in results produced in different periods are not cumulative. A

reasonable performance measure is the average error over all jobs. Three heuristic algorithms

that lead to feasible schedules with small average errors are described. For type C jobs, the

undesirable effects of errors produced in different periods are cumulative. Schedulability criteria

of type C jobs are discussed.

.. - I1 -

I. INTRODUCTION

In a hard real-time system, a timing fault is said to occur when a real-time process delivers

its result too late. A new approach, called the imprecise computation approach, was proposed

recently as a means to avoid timing faults in hard real-time systems [l-31. The intent of this

approach is to provide timely but possibly degraded real-time services by making results that are

of poorer quality available when the desired result cannot be obtained in time. Instead of

providing a primary version and an alternate version of each real-time service as suggested in [4],

this approach relies on making effective use of intermediate results returned by prematurely

terminated real-time processes.

Specifically, in the imprecise computation approach, real-time processes are designed to

have monotone property; a process is said to have this property if the accuracy of its intermediate

result is non-decreasing as more time is spent to obtain the result. Such a process is called a

monotone process. Practical examples of monotone processes include well-designed iterative

processes and multiphase processes (e.g. see [5-101). It is reasonable to assume that the result

produced by a monotone process upon its normal termination is the desired result; this result is

said to be a precise one. External events such as timeouts, interruptions, or crashes may cause

the process to terminate prematurely. If the intermediate result produced by the process upon

its premature termination is saved and made available, the application may still find the result

usable and, hence, acceptable; such a result is said to be an imprecise one. In the imprecise

computation approach, run-time system support is provided to record intermediate results

produced by each real-time process at appropriate instances of the process’s execution.

Programming language primitives are provided to allow the programmer to specify the

intermediate result variables to be recorded and the time instants to record them so that the

resultant process is monotone. These primitives also allow the programmer to define a set of

error indicators. The values of the error indicators are made available to the application process

aIong with the intermediate resuIts. By examining these error indicators, the application process

can decide whether an intermediate result is acceptable when the desired, precise result cannot be

obtained in time. A systems based on the imprecise computation approach is described in (1-21.

-

1

This paper is concerned with the problem of scheduling periodic jobs to meet deadlines on

systems based on the imprecise computation approach. This problem differs from the traditional

scheduling problems Ill-131 for the following two reasons: (1) The scheduler may choose to

terminate a task before it is completed, causing it to produce an acceptable but imprecise result.

Consequently, the amounts of processor time assigned to tasks in a valid schedule can be less

than the amounts of time required to complete the tasks. (2) A meaningful formulation of this

problem must take into account the quality of the results. Depending on the undesirable effects

caused by errors, jobs are classified as type N or type C. For type N jobs, the effects of errors in

results produced in different periods are not cumulative. The average error over all jobs to be

scheduled is used as the criterion of optimality. Three heuristic algorithms that lead to feasible

schedules with small average errors are described,. and their performance is discussed. For type

C jobs, the undesirable effects of errors produced in different periods are cumulative. We are

concerned with the criteria that can be used to determined whether a set of type C jobs can be

scheduled to meet all deadlines.

The rest of this paper is organized as follows: Section 11 provides the background,

definitions and assumptions that are needed in subsequent sections. Section 111 discusses the

problem of scheduling periodic jobs to meet deadlines making use of imprecise results. The types

of jobs and the appropriate performance measures are defined. Section IV describes a class of

heuristic algorithms based on the rate-monotone algorithm [14] for scheduling type N jobs.

Section V discusses the schedulability criteria for two special classes of type C jobs. Section VI is

a summary.

11. BACKGROUND AND ASSUMPTIONS

This section defines rigorously the errors in computation results and discusses means to

return imprecise results. In a system that supports imprecise computations, the intermediate

results generated by each server process are recorded at appropriate instants. The exact manner

in which the recordings are done is not important to us. One way is to use the process structure

and the language primitives provided by Concord [l-21. In Concord, a server type is defined for

each real-time service provided by the system. Each (instance of a) server (type) is split into a

2

callee and a supervisor. A client (caller) invokes a service by sending an invocation request to the

supervisor of the server providing the service. When the supervisor receives the invocation

request, it initializes the callee and requests the system to schedule the callee’s execution. The

supervisor executes concurrently with and monitors the progress of the callee and records the

intermediate results produced by the callee. The intermediate result variables to be recorded and

the instants at which they are recorded are specified by the programmer using an imprecise

r e t u r n statement in the callee procedure. In particular, the supervisor records the variables

specified as parameters in each imprecise return statement whenever the statement is executed.

In addition to the intermediate result variables, a set of error indicators is also specified in each

imprecise return statement. When the callee terminates normally, the result returned by it is

passed to the client through the supervisor. If the callee terminates prematurely, the supervisor

passes to the client the latest recorded values of the intermediate result variables and error

indicator variables. Based on the values of error indicators the client can decide whether the

intermediate result is acceptable.

In this paper, our attention is confined to the problem of scheduling periodic jobs on a

tight-coupled multiprocessor system. Communication delays between clients and servers are

assumed to be negligibly small. The task of assigning processors to execute invoked procedures is

carried out by a scheduler. When the execution of a procedure is preempted by the scheduler to

be resumed later, no result is returned to the client. A result is returned only when the callee

procedure terminates either normally or involuntarily. The latter occurs when the scheduler

terminates the callee procedure.

Again, we are concerned only with processes that have the monotone property: the precision

of the result produced by the continued execution of a process with this property is

monotonically non-decreasing. More specifically, we define the correctness C of the result R

produced by a process P to be the extent to which the execution of P has progressed to produce

the result. When R is not acceptable, C has the value 0; the error E is 1. When R is precise, C

has the value 1; e is 0. Let r be the time required for the process to terminate normally and m be

the minimum time required to produced an acceptable result. When a monotone process has

3

executed for t units of time, the error E in its result is given by

if t < m
if m < t < r
if t > r

where e (t) is in the range (0,l) and e (t l) 2 e (t z) for m s t , < t z L r .

III. JOBS TYPES AND PERFORMANCE MEASURES

A workload model commonly used in studies on scheduling hard real-time jobs is the

periodic-job model (14-231. (From this point on, the terminology commonly used in studies on

scheduling disciplines is used.) In this model, we are given a set J = {Jk} of K jobs. Each j o b J k

is an independent unit of computation and consists of a periodic sequence of tasks Tk,j for

j=1 ,2 ,3 , - . The execution time of any task Tk,i in Jk, denoted by rk, is the amount of

processor time required to complete the task, i.e. for the task to execute until its normal

termination. Let a k , j be its ready fime before which its execution cannot begin. Its deadline is

the time instant at or prior to which i t must produce an acceptable result. In particular, the

deadline of the task Tk,i is the ready time of the task Tk,j+l. Let p k = a k , j + l - e t k , i be the

repetition period of the job Jk and t k = 1 / P k be its repetition rate. The job Jk is, therefore,

specified by the %tuple (Pk,rk). Let p be the least common multiple of the periods p k for

k = l , 2 ; . . K a n d r = l / p .

The problem of scheduling tasks to meet deadlines on a system that allows tasks to be

terminated before they are completed, producing imprecise results, differs from the traditional

scheduling problems in the following way: It is possible for the total processor time assigned to a

task in a valid schedule, referred to as its assigned time, to be less than its execution time.

Hereafter, by a (valid) schedule we mean one in which the assigned time of every task Tk,i is a t

least equal to mk, the minimum amount of processor time required to produce an acceptable

result. We refer to mk as the minimal ezecution time of the tasks in job Jk. A schedule in which

the assigned time of every task is equal to its execution time is called a precise schedule. (We

note that only precise schedules are valid schedules in the traditional sense.) If the assigned time,

4

denoted by u, of a task is equal to its execution time r, the error in the result produced by the

task is zero. If its assigned time is less than its execution time (corresponding to involuntary

termination of the task), the error E (a) in its result is a non-increasing function of c. We

consider here only preemptive schedules. Again, the result produced by any task is returned to

the client only at the time when the task terminates, either normally when it attains 7 units of

processor time or involuntarily when its deadline is reached.

The term feasible schedule of the job set J refers to a schedule in which every task meets its

deadline. In a feasible schedule, the total processor time assigned to every task prior to its

deadline is equal to or larger than its minimal execution time. The problem of finding a feasible

schedule of periodic jobs without taking errors in the results into consideration is a relatively

easy one. - Given a job set J, we define a periodic job set F ={ Fk } in which the job Fk is

specified by (Pk, mk). In other words, Fk has the same repetition rate as Jk but consists of tasks

with execution time mk. The tasks in Fk have the same ready times and deadlines as the

corresponding tasks in Jk. The problem of finding a feasible schedule of the job set J is the same

as the problem of finding a precise feasible schedule of the job set F. Known results [14-231 can

be applied directly here.

A more meaningful formulation of the scheduling problem on a system that supports

imprecise computations must take into consideration the quality of the results produced by the

tasks. For this reason, we want to find algorithms leading to feasible schedules that keep some

cost functions of errors small.

To motivate our choices of performance measures, we note that for different types of jobs,

errors in the results cause different undesirable effects. As an example, consider a job consisting

of tasks that periodically receive, enhance, and transmit frames of video images. The effect of

the error in the- imprecise result generated in a period is a reduction in the quality of the

transmitted image in that period. This undesirable effect is tolerable for many applications.

Hence, no timing fault occurs as long as sufficient processor time is assigned to every task before

its deadline so that a frame of acceptable quality is transmitted on time. For applications such

as this one, errors in the results produced in different periods do not have cumulative effect. We

5

refer to jobs of this type as type yon-cumulative) jobs.

A reasonable performance measure for type N jobs is the average error of all results. Given

a feasible schedule of the job set J, the average error is defined as follows: Let the error in the

result produced by the task T k , j be denoted by f k (a k , ,) when its assigned time is uk,,. Let Qk

be the number of consecutive periods over which the average error of job Jk is computed. At any

time s beyond the deadline of the (i +Qk -2)th task but before the deadline of the

(i + Qk - 1)th task in Jk for some i , the average error of Jk is

where ak,c is the processor time attained by the current task Tk,i+QL-l a t time s . Let Ek (s-)

be the contribution to the average error of Jk by errors in the results produced during the Qk -1

periods prior to s. This equation can be rewritten as

We may choose to compute the average error over a time interval of duration q p , an integer q

times the least common multiple p of all repetition periods. In this case, the average error of Jk

is approximately equal to

The average error over all jobs in J is

K

K

k=1
where wk are non-negative constant weights and wk = 1. (These weights reflect the relative

importance of different jobs.) Given a set of type N jobs, we want to find feasible schedules that

have the minimum average error E among all feasible schedules of J .

As an example of a different type of applications, suppose that we have a periodic job in

which each task processes the radar signal returned from a tracked target and generates the

coordinates and the velocity of the target for display purposes. When a task terminates

prematurely, it produces coarse estimates of the target position and velocity in that period.

Typically, it is essential that a precise result be obtained every now and then. For example, the

position of the target must be accurately displayed every 30 seconds. Hence, if the results

produced by the position computation tasks in several consecutive periods are imprecise, the task

in the next period must complete normally and produce a precise result. Otherwise, a timing

fault occurs. We refer to jobs of this type as type C(urnulative) jobs. A reasonable formulation of

the scheduling problem for type c jobs is as follows: Let the cost a(' k (a k , j)) be a monotone

non-decreasing function of the error c k (g k , j). At any time s between the deadlines of Tk, and

Tk, II +1, let the cumulative cost due to errors of Jk be

where Tk,l (1 < n) was the last task in Jk that terminated normally and produced zero error, and

g k , at time s. Clearly, a timing fault

occurs whenever the assigned time of any task is less than mk. A timing fault occurs also when

the cumulative cost 7k exceeds an upper limit and the deadline of current task Tk, +1 is reached

before it attains rk units of processor time. The scheduling problem we want to consider is: given

a set of jobs, find a schedule in which there is no timing fault.

is the processor time attained by the current task Tk,

N. HEURISTIC ALGORITHMS FOR TYPE N JOBS

This section describes three heuristic algorithms for type N jobs and discusses their

performance. These algorithms are based on the rate-monotone algorithms [14,151. Specifically,

we first use either the rate-monotonic next-fit algorithm or the rate-monotonic first-fit

algorithm [15] to assign individual jobs in the given set J to the processors in a multiprocessor

system; jobs in J are sorted in the order of increasing period lengths and are assigned to

processors on next-fit or first-fit basis. In deciding whether a job can be assigned to (i.e. can fit

on) a processor, we use the minimal execution time of its tasks instead of the execution time to

compute the utilization factors as follows: Let the minimal utilization factor of the job Jk be

uk = rk mk. Suppose that n jobs with a total minimal utilization factor u are already assigned to

7

a processor. If an addition job with repetition rate r , execution time 7, and minimal execution

time rn is assigned to this processor, the total minimal utilization factor of the n +1 jobs is

u + r m. This job is assigned to the processor only if

We note that these n + 1 jobs are not precisely schedulable on the processor in general. However,

they are schedulable if the assigned time of every task is equal to its minimal execution time [14].

We now assume that jobs are assigned to processors as described above and confine our

attention to the problem of scheduling periodic jobs on a single processor to meet all deadlines

while keeping the average error of all jobs on the processor small. The mixed scheduling

algorithms described below use the rate-monotone algorithm to ensure that all deadlines are met

but use different strategies to improve result quality. They work as follows: Given a set J of K

jobs with a total minimal utilization factor equal to or less than K (2'IK - 1) to be scheduled on

a processor, we define two job sets, the f i rs t set F and the last set L. For each job Jk = (p k , Tk)

in J, there is a job Fk = (P k , mk) in the first set F. In particular, the task Tk,j(F) in the job Fk

is the first portion of the task Tk, j in Jk, and the execution time of Tk,,(F) is mk for all j .

Similarly, for each job Jk in J, there is a job Lk = (pk,?k -mk) in the last set L. The task

Tk,j(L) in the job Lk is the last portion of the task Tk,i in Jk, and the execution time of Tk,j(L)

is ?k -mk. Furthermore, the ready times and deadlines of the tasks Tk, , , Tk , , (F) , and Tk , , (L)

are the same. Instead of the job set J, we schedule the sets F and L using the following

preemptive, priority-scheduling strategy.

Theorem W-1: All jobs in F are assigned higher priorities than jobs in L and are

precisely scheduled according to the rate-monotone algorithm. This strategy of scheduling jobs

in J guarantees that all deadlines are met regardless how tasks in L are scheduled.

Proof: Because

this strategy ensures that all tasks in F complete before their deadlines independent of how tasks

8

in L are scheduled (141. For every schedule of F and L obtained in this manner, there is an

equivalent schedule of jobs in J in which the assigned time of every task is at least equal to its

minimal execution time. Therefore, the theorem follows. rn

‘ Jl

J 2

J 3

J 4

Figure 1 shows an example in which the job set J consists of 4 jobs. They are (2, l),

(4, 0.5), (5, 0.5) and (6, 1.5) and have minimal execution times 0.5, 0.2, 0.1 and 1.0, respectively.

The total utilization factor of the job set J is equal to 0.975. J is not precisely schedulable

1 1 t 1 I

I 1 I 1

I 1 I I

I 1
ii

0 1 2 3 4 5 6 7 8
I Time t I I

Figure la. A precise rate-monotone schedule

J l

J 2

J 3

J4

Figure lb. A feasible schedule - an example on scheduling of type N jobs.

9

according to the rate-monotone algorithm as shown in Figure la. (The deadline of T4,1 is missed

at time 6.) However, the first set F consists of (2, 0.5), (4, 0.2), (5 , 0.1) and (6, 1.0) with a total

utilization factor 0.4867; i t is guaranteed to be precisely schedulable according to the rate-

monotone algorithm. Figure l b shows a rate-monotone schedule of F. Black bars in Figure l b

indicate the time intervals during which the spared processor time is assigned to jobs in the last

set L, consisting of (2, 0.5), (4, 0.3), (5, 0.4) and (6 , 0.5).

In general, the fraction of processor time used to execute tasks in F is at most equal to

K (21/K - 1) (e.g, 0.82 for K =1 and In2 for large K). Whenever there is no task in F to be

executed, the spared processor time can be used to execute tasks in L to improve the quality of

the results. The algorithms described below differ in how priorities are assigned to jobs in L.

N.l. The Leaat Utiliration Algorithm

To see how priorities should be assigned to jobs in L so that the average error is kept small,

let us first consider the special case of linear error functions given by

From Eqs. (2) and (3), the average error of the job set J over a time interval of length q p is

given by

where

is the total processor time assigned to all tasks in Lk over qprk periods, and

Without loss of generality, let the jobs be indexed so that

10

K K

k=l k-1
Since 0 5 a k (L) for k = 1,2, * * * K and ak(L) 5 q p (1 - rk mk), the sum in the

right hand side of Eq. (6) is maximized (or E is minimized) when g , (L) is made as large as

possible. For a given value of a,(L), E is minimized by making a,(L) as large as possible and so

on. This suggests the following algorithm, referred to as the least utilization algorithm. It is

preemptive and priority-driven. Given a job set J, we divide it into the first set F and the last

set L as defined above. All jobs in F are assigned higher priorities than the jobs in L. Priorities

of the individual jobs in F are assigned statically on rate-monotone basis, i.e., jobs with higher

repetition rates are assigned higher priorities. Priorities of jobs in L are assigned also statically

but according to their values of the ratio wk / vk; the larger this ratio is, the higher the priority.

(When all jobs in J have the same constant wk and minimal execution time mk, jobs with smaller

utilization factors are assigned higher priorities and, hence, the name of this algorithm.) At any

time when there is no task in the first set F to be executed, the processor is assigned to jobs in

the last set L on preemptive, priority-driven basis with L, having higher priority than L,, L ,

having higher priority than L , and so on.

For illustrative purpose, we consider the example shown in Figure 1. Suppose that wk =

114 for k = 1, 2, 3 and 4 and q = 1. Since V , = 0.25, V, = 0.075, V, = 0.08 and V, = 0.083,

the priorities assigned to L,, L,, L , and L , according to the least utilization algorithm are 4, 1, 2

and 3, respectively, with a smaller number denoting a higher priority. The total assigned time to

jobs L,, L,, L , and L , in p = 60 units of time are a l (L) = 10.0, a2(L) = 4.5, u3(L) = 4.8 and

a4(L) = 5.0. The average error over 60 units of time is 0.0833.

Let

K
u = Tk r k

k = l

K

be the total utilization factors of the jobs in J and F, respectively. Let the jobs be indexed so

that (8) is true. When U > 1, there exists an integer i such that 1 5 i <K and

I i+l

The average error has the following lower bound when the error functions are linear as given by

Eq. (5) and the least utilization algorithm is used.

Theorem IV-2:

i
W i + l

c+l k-1

i
1 - 2 wk +-(V . - l + u) if U > I

if U s 1 E, 2 { '='

where the index i is defined by (10). Furthermore, this bound is tight.

Proof: In a time interval of length q p units, the processor is assigned to jobs in the first set F

for q p mk f k = q p u units. q p (1 - u) units of processor time are available to be assigned to

jobs in the last set L. We consider the following two cases:

K

k = l

(i) U > 1. In this case, an optimal assignment is one in which the assigned time of every

task in Lk is rk - mk for k = 1,2, - * i and the remaining processor time is assigned to tasks in

the job L i + l . For this assignment,

From Eqs. (6) and (7b) we have

12

(ii) U 5 1. An optimal assignment is one in which the assigned time of all tasks in L k is

rk -mk for d l k = 1,2, * - - K . In other words,

for all k. From Eqs. (6) and (7b)

In both cases, the equality holds for any set of jobs in which all jobs have the same repetition

period p . The case of U > 1 is illustrated by Figure 2. I

In the special case of K identical jobs with wk = 1 / K and vk = t k (rk -mk) =

(U - u)/K, we have

Corollary W-1:

(U - l) / (U - u) if U > 1
E = { if U s 1

Figure 2. An example on a set of jobs for which bound (11) is tight.

Proof: We consider the case when U > 1 in the following; for U 5 1 it is obviously that E = 0.

From Eq. (6) and Theorem IV-2, we have

This average error is achieved by assigning all tasks in L equal amount of processor time.

Corollary IV-1 states that as long as U 5 1, the least utilization algorithm can schedule all

identical jobs to meet deadlines while keeping the average error zero. In other words, the least

utilization algorithm is optimal, like the earliest deadline first algorithm [14], for identical jobs.

However, the earliest deadline first algorithm cannot respond dynamically to change in load

conditions; sudden increases in the execution time of any job and additions of new jobs tend to

cause timing faults when U is close to 1. The least utilization algorithm can respond to these

changes as long as the first set remains to be schedulable according to the rate-monotone

algorithm.

Unfortunately, the spared processor time that is available after all ready tasks in F are

assigned is not always be used in an optimal manner by the least utilization algorithm to reduce

average error. An example illustrating this situation is shown in Figure 3. In this example, there

are three jobs, J , = (3, 0.9), J2 = (2, 0.8) and J3 = (1, 0.6). The minimal execution time of all

. .

- T i , j (F) ' - T i , j (L)

Figure 3. An example on suboptimal use of processor time to reduce average error.

14

jobs is 0.2 and V , = 0.233, V2 = 0.3 and V3 = 0.4. The last set L consists of (3, 0.7), (2, 0.6)

and (1, 0.4), and the priorities are 1, 2 and 3, respectively. Figure 3 shows a schedule obtained

using the least utilization algorithm. Note that T2, , (L) is not completed and only T3,6(L) among

all T, , j (L) ' s is assigned any processor time. Yet the processor is left idle during the last 0.3 units

of time before the deadline of T3,6.

In general, the worst case average error depends on the parameters of the jobs. To

illustrate how the worst case average error depends on these parameters without getting

hopelessly lost in complicated notations, we consider here the simply periodic case [24]. A set of

jobs J is said to be simply periodic if every repetition rate is an integral multiple of the next

smaller rate (and thus of all smaller rates).

Theorem N-3: Consider a set J of simply periodic jobs with U > 1. Let the jobs be

indexed so that (8) is satisfied. When p = p , > P 2 > - . . > P K ,

P i
8; = p i - C - r n k > s i - m i i = l , 2 , - - * K

k=i p k

the error functions are linear as given by Eq. (5), and the least utilization algorithm is used,

where [z 1 denotes the smallest integer that is equal to or larger than 2, and i is the smallest

index satisfying inequality

Proof: Let u k (L) - denote the worst case total assigned time of the tasks T k , j (L) in L k during

the time interval of length q p over which the average error is computed. To find - u k(L) , we

examine the first p l l p k periods 6f Jk for k = 1, 2, - - K .

During the first period (and subsequent periods) of J , of length p l , the amount of spared

processor time S , after completing all tasks in the first set is s 1 as defined in (12) since there are

15

p 1 / P k ready tasks in Fk in this period. Because L l has the highest priority among all Lk'S, we

have - a l (L) = q(Tl -ml) = q p V,.

Because of the way in which priorities are assigned, at least p , / p k tasks in Fk, one task in

F, and one task in L l are completed before any processor time is assigned to the task T, , , (L) in

L , during the first period of J,. The spared processor time during this period that can be

assigned to T2,1(L) is S, = 9, -7,. There are the following three cases: (i) If S, 2 7, - m2, we

have - u , (L) = q p V,. (ii) If 0 < S, < r2 - m,, all S, units of processor time in the first period

of J , is assigned to T2,1(L). The assigned time of the tasks T 2 , j (L) is r t -m2 during the

subsequent (p1 / p 2 -1) periods. Hence

(13) 1 P 1 u2 (L) = q S ~ - T ~ + (- - 1) (r 2 - r n 2) I P z

(iii) If S, < 0, the execution time of T, , , (L) is larger than s2 -ml . There is no spared processor

time available to be assigned to the tasks in L , during its first [T~ / s2 1 - 1 periods.

I P 1
u,(L) = Q r . 1 / s Z l ~ 2 - 5 + (- - - - r~l/S,l)(. ,-m,) I P 2

(Note that Eq. (13) is a special case of this expression when [T ~ / s 2] = 1.) MAreover,

and - u k (L) = 0 for k = 3, 4, - * - K.

Suppose that the spared processor time during every period of Li-l after completing all

ready tasks in F and L,, L,, - * - , Li-, is larger than T ~ - ~ - miL1, Le.,

s. , = s. , -r 1 - 7 , - . . . - ridl < T,. -mi

We have

16

k = l , 2 , . . * , i - l

Hence

i-1 w

We note that the inequalities in (12) implies that every task of Li can be precisely scheduled

if Li is the only job in the last set L. This restriction places a reasonable upper limit on the total

minimum utilization factor and the utilization factors of individual jobs. The bound in Theorem

N-3 can be applied to the more general case when periods of jobs in J do not have distinct

values if jobs with the same repetition period have the same weighted utilization factor wk / V,.

Specifically, suppose that jobs Jii, Ji,, - - - , Ji. have the same period pi and weighted utilization

factor w i / V i . These jobs can be clustered together as one job with minimal execution time
I

mi = rn. + m . + * * - + mi. and execution time ri = ril + ri2 + * * * + Ti .
'1 '2 J j

W . 2 . Other Heuristic Algorithms

In general, the underlying procedure may not converge linearly, and the error in the result

produced by a task does not decrease linearly as its execution continues. We consider two

additional algorithms that keep the average error small for general error functions. Again, they

differ from the least utilization algorithm only in how priorities are assigned to jobs in the last

set L.

17

.
When the behavior of the error function is not known, we may want to use an algorithm

that attempts to keep the average error small by making good use of slack time between the time

instant a t which the task in the current period first attains mk units of processor time to the

beginning of the next period, the ready time of the next task. The lower bound on slack times

derived in [19] provides the basis of the best d o c k time algorithm. It has been shown that after

the completion of the task Tk, j (F) , the slack time to the ready time of the task Tk +,(F) is at

least equal to the 0.207 q k , , where q k , j is the length of the last quantum of processor time

assigned to the task T k , i (F) . This lower bound on slack times of individual jobs allows us to

bound the length of time between the instant when the processor becomes free from executing

tasks in F and the ready time of the next task in F. When the processor is free to execute tasks

in L, the best slack time algorithm assigns the highest priority to the job with the largest slack

time.

V. SCHEDULING TYPE C JOBS

We consider here a case of practical interest where the cost function (z) in Eq. (4) is equal

to 1 for z >O and is equal to zero for z =O. For this cost function, requiring that the cumulative

cost remains under an acceptable upper limit is the same as requiring that at least one task

among the tasks Tk, in several consecutive periods of each job Jk be completed normally and

produces a zero error. Specifically, a schedule for such a set of type C jobs is said to be a feasible

schedule if (i) the assigned time of every task in Jk is at least equal to mk and (ii) the assigned

time of at least one task among every Qk consecutive tasks in Jk is equal to T k . We refer to Qk

as the cumulation rate of Jk. A set J of (type C) jobs is said to be schedulable if there exists a

feasible schedule of J.

V.l. Scheduling Jobs with the Same Repetition Period and Cumulation Rate

We consider now the special case when all jobs in the given set J have the same repetition

period p and the same cumulation rate 2 Q - 1. Given such a set of K jobs, we define a first set

F as in Section III; for each job J k = (p , ?k) in J, there is a job Fk = (p , mk) in F. Figure 4

illustrates the problem of scheduling the jobs in J. During each period, mk units of processor
K

k-1

19

Figure 4. Scheduling of type C jobs with the same repetition period.

K

k = l
time are assigned to the current tasks of Fk for all k . p - mk units of processor time are

available each period and can be used to complete some tasks in J. Let R = { R , } denote a set of

K independent tasks defined as follows and is referred to as the remaining set : for each job in J,
there is a task with execution time (rk -mk) in R. We note the following.

Theorem V-1: The problem of finding a feasible schedule of the job set J with repetition

period p and cumulation rate 2 Q - 1 is the same as finding a non-preemptive, precise schedule of

the remaining set R on Q processors with completion time equal to or less than p -
K

k-1
mk.

Proof: We segment the time into intervals of Q periods each. For every job Jk, if one task is

completed normally in each interval, i.e. has assigned time rk, then at least one task in each

consecutive 2 Q - 1 periods is completed.

K

k-1
To find a feasible schedule, we assign the first mk units of processor time at the

beginning of each period to the current tasks in the first set. To complete one task in every job

Jk every Q periods, the remaining portion of the task must be scheduled precisely in one of the

Q periods. The execution time of this portion is Tk -mk. The statement of the theorem follows.

m

Since the problem of finding optimal, non-preemptive, precise schedules of independent

tasks to meet uniform deadline on Q processors is NP-complete [25] , it follows from Theorem

V-1 that the problem of finding optimal feasible schedules (e.g. with the smallest possible

cumulation rate) of type C jobs with identical repetition period and cumulation rate is also NP-

20

complete. We consider now the following heuristic algorithm, called the fength monotone

algorithm: In the beginning of every period, the current task in Fk is assigned ??zk units of

processor time for all k = 1, 2, * K. The remaining set R is then scheduled precisely in the Q

intervals, each of length p - mk, using the first-fit-decrecrsing (FFD) algorithm [26]. In other

words, the tasks in R are sorted so that their execution times rk - mk are in decreasing order;

these tasks are assigned to the Q intervals on first-fit-decreasing basis.

K

. k-1

Jl

~z

J3

J4

JS

Figure 5 shows an example in which the set J consists of 5 jobs. They are (1, 0.4), (1, 0.5),

(1, 0.3), (1, 0.4) and (1, 0.2), and all have minimal execution times 0.1 and the cumulation rate 5

(;.e., Q = 3). During each period 0.5 unit of processor time is assigned to the current tasks of F

and 0.5 unit of processor time is available for the remaining set R. The execution times of the

tasks in R are 0.3, 0.4, 0.2, 0.3 and 0.1, respectively. According the length monotone algorithm

the tasks Rk are scheduled at time 1.5, 0.5, 1.8, 2.5 and 0.9, respectively.

1

m - I n l l

n n n

n n
n d n I n 1

Lemma V-1: The tasks in the remaining set R can be scheduled precisely in Q intervals

of length equal to or less than

Figure 5. An example on scheduling of type C jobs using length monotone algorithm.

21

using the FFD algorithm. Moreover, this bound is tight.

Proof: Suppose that the remaining set cannot be scheduled precisely in Q intervals of length

equal to C, using the FFD algorithm. Without loss of generality, let

r l - m l 2 r2 -m2 2 * * * 2 rk -mk

Let Rj be the first task in R that cannot be fit in the Q intervals. We need to consider the

following three cases:

(i) rj -mi > C, /2. Clearly, rk -mk > C, / 2 for k = 1, 2, * - - j-1. In other words,

r j - m i > C U / 2 f o r 1 < i s Q + l . Hence

We have a contradiction.

(ii) r, -mi = C, / 2 . By the fact that Ri cannot fit in any of the Q intervals, more than

C, / 2 units of time in each interval must have been assigned to tasks with total execution times

exceeding C, / 2. Again,

and we have a contradiction.

(iii) rj - mi < C, /2. Let rj -mi = X C, for some fraction X smaller than 1/2. Since Ri

cannot be assigned to any of the Q interval of length C,, the total execution time of all tasks

already assigned in every interval must exceed (1 -X)C,. Moreover,

Since 2 - 4 X > 0 and Q 2 2, we have

22

K K
E (r k - m k) > E (r k - m k)

k - 1 k = l

2 x - 1 = (l -

Again, we have a contradiction.

To show this upper bound is tight, we consider a remaining set R consisting of Q + 1 tasks.

The execution time of every task is A. These Q + 1 tasks can be scheduled in Q intervals with

length 2 A or larger. Since

the upper bound is tight. '.
Theorem V-2: A set J of K type C jobs of repetition period p and cumulation rate

2 Q - 1 is schedulable (Le. a feasible schedule is guaranteed to be found) using the length

monotone algorithm if

where u and U are total utilization factors of F and J, respectively, as defined in Eq. (9).

Proof:

intervals during which processor times can be assigned to tasks in R is equal to p . -

set of tasks in R can be scheduled precisely on non-preemptive basis if

The proof of this theorem follows directly from Lemma V-1. The length of the Q
K

mk. The
k - 1

Dividing both sides of the inequality by p , we have

211

The region of the u-U plane in which the set J is schedulable is illustrated by Figure 6.

The shaded area is the schedulable region for Q = 2 (i.e. cumulation rate 3).

V.2. Scheduling Simply Periodic Jobs

We consider a set J of simply periodic jobs consisting of subsets J, for k = 1, 2, * * K; all

jobs in J, have the same repetition period p k , ready times and deadlines, and

p1 < p , < - - * < pK = p. Suppose that one task in every job must be completed a t least once

every q p units of time. In other words, for every job with repetition period p k , at least one task

in every (2q p / p k) - 1 consecutive periods must be completed. We say that these simply periodic

jobs have the same cumulation rate of q p units of time.

Figure 7 illustrates the problem of scheduling simply periodic jobs. In this example, there

are five jobs to be scheduled. They are J, = (1, 0.5), J , = (1, 0.47), J3 = (1, 0.45), J4 = (2, 0.6)

and J, = (4, 0.7) and have minimal execution time 0.1. In term of the notation just introduced,

J = {J,, J,, 5,) where J, = {J,, J,, J,} , J, = {J,} and J, = {.I5}. Suppose that g = 1, i.e. one

task in every job must be completed every 4 units of time. We define the first set F as in Section

In. The remaining set R consists of three subsets, R, = {R,, R,, R,}, R, = {R,} and

R, = {R5}. Whenever a task in F is ready, it is scheduled according to the rate-monotone

3.0 uk Q =5

0 0.5 1.0 1.5 U

Figure 6. Schedulable region.

24

J

~ i l

J2

~3

J4

J5

-h 1
, n n - n n

n I n h - 1

n
n I

Figure 7. An example on scheduling of Type C simply periodic jobs.

algorithm. Tasks in R are scheduled in the time intervals during which the processor is not

assigned to tasks in F. The lengths of these time intervals during the first 4 periods of J, are 0.5,

0.7, 0.6 and 0.7, respectively. The tasks R , , R, and R 3 in R, have execution times 0.4, 0.37 and

0.35, respectively. Each of these tasks must be scheduled precisely in one of the 4 intervals so

that it can execute from the start to finish in the interval. A reasonable heuristic is to assign the

three tasks in R, the highest priority among all tasks in R by scheduling them first in these

intervals using the FFD algorithm. As shown in Figure 7, R,, R , and R , are scheduled at 0.5,

1.3 and 2.4, respectively. R4 with execution time 0.5 cannot fit in the first period of J4. It is

scheduled at the intervals (2.75, 3) and (3.3, 3.25) in the second period of J4. Finally, R, is

scheduled at the intervals (0.9, l .O), (1.67, 2.0) and (3.55, 3.72) in a period of J5

The above example suggests a natural way to extend the length monotone algorithm so that

it can be used to schedule simply periodic jobs with the same cumulation rate. Again, the jobs in

J are divided into the first set F and the remaining set R. Tasks in F are assigned higher

priorities than the tasks in R and are scheduled according to the rate-monotone algorithm. For

each time interval of duration q p and for each job Ji in Jj with repetition period p j , there is a

task Ri with execution time 7; -mi in Rj. This task must be scheduled precisely in one of the

q p / p j periods of jobs in Jj. The eztended length monotone algorithm schedules the tasks in R as

follows: In the beginning of every period of J,, the processor is assigned to the ready tasks in F.

25

The tasks in R, are then scheduled, making use of the spared processor time in q p / p l periods.

Specifically, the FFD algorithm is used to assign the tasks in R, to the processor in the time

intervals during which the processor is not busy executing tasks in F, and every task in R, is

scheduled to fit within one period of J1. After the tasks in R, are scheduled, the spared processor

time left in the q p/p2 periods of J, is assigned to the tasks in &, again, using the FFD

algorithm. In general for all k 5 K, the tasks in R, are scheduled in the q p / p k periods using

the FFD algorithm after the tasks in R,, R,, - - Rk-l are scheduled.

Unfortunately, the amounts of spare processor time in different periods of each job are

different. This fact makes i t difficult to derive analytically the condition(s) under which a set of

simply periodic jobs is guaranteed to be schedulable using the extended length monotone

algorithm. A simulation study is being carried out to determine the performance of this

algorithm.

VI. SUMMARY

This paper discusses the problem of scheduling periodic jobs on systems that allow tasks to

terminate prematurely and produce imprecise results. When a task terminates normally, the

error in the result produced by it is zero. When it terminates prematurely, the result produced

by it is acceptable as long as the duration of its execution is equal to or longer than its minimal

execution time. Hence, to guarantee that all deadlines are met requires only that the amount of

processor time assigned to every task prior to its deadline is at least equal to its minimal

execution time.

Depending on the undesirable effects caused by errors, jobs are classified as type N and type

C. For type N jobs, the criterion used to measure the performance of scheduling algorithms is

the average error over all jobs. Three heuristic algorithms that guarantee to produce feasible

schedules of type N jobs are described. Their performance depends on how errors vary as

functions of the assigned times of the tasks. The least utilization algorithm produces suboptimal

schedules with small average error when errors in all jobs are linearly dependent on their

assigned times. Bounds on the average error for schedules generated by this algorithm are

26

derived. Many iteration procedures converge fasters during earlier iterations; the error is often a

convex function of the assigned time. For this case, the least attained time algorithm should

achieve less average error. The performance of the least attained time algorithm and the best

slack time algorithm remains to be evaluated.

For type C jobs, the undesirable effects of errors produced in different periods are

cumulative. We are concerned with the case when at least one task among every Q consecutive

tasks in every job is required to complete normally. The length monotone algorithm can be used

to schedule jobs with the same repetition period and cumulation rate. A necessary condition for

a set of jobs to be schedulable using the length monotone algorithm is found. The way in which

this algorithm can be used to schedule simply periodic type C jobs is discussed.

27

.

imprecise results,” to appear in the Proceedings of the IEEE Real-Time Systems

REFERENCES

[l] Lin, K. J., S. Natarajan, J. W.-S. Liu, and T. Krauskopf, “Concord: a system of imprecise
computations,” Proceedings of the 1987 IEEE Compsac, Japan, October, 1987.

(21 Lin, K. J., S. Natarajan, and J. W. S. Liu, “Imprecise results: utilizing partial computations
in real-time systems,” to appear in the Proceedings of the IEEE Real-Time Systems
Symposium, 1987.

[4] Liestman, A. L. and R. H. Campbell, “A fault-tolerant scheduling problem,” IEEE
Transactions on Software Engineering, Vol. SE-12, No. 11, pp. 1089-1095, November, 1986.

[5] Basu, A. K., “On development of iterative programs from function specifications,” IEEE
Transactions on Software Engineering, Vol. SE-6, pp. 170-182, March, 1980.

I [6] Turski, W. Mi, “On programming by iterations,” IEEE Transactions on Software
Engineering, Vol. SE-10, pp. 175-178, March, 1984.

~ 171 Chandy, K. M., J. Misra, and L. M. Haas, “Distributed deadlock detection,” ACM
Transactions on Computer Systems, Vol. 1, No. 2, pp. 144-156, May, 1983.

(81 Bellman, R. and S. Dreyfus, Applied Dynamic Programming, Princeton University Press,
Princeton, N. J., 1962.

[9] Shreider, Y., ed., Method of Statistical Testing: Monte Carlo Method, Elsevier Publishing
Company, New York, 1964.

[101 Rabin, M. O., “ Randomized Byzantine generals,” Proceedings 24th Symposium
Foundations of Computer Science, Tucson, Arizona, pp. 403-409, November, 1983.

[ll] Coffman, E. G. Jr. and R. Graham, Scheduling Theory, John Wiley and Sons, New York,
1976.

[12] Lenstra, J. K. and A. H. G. Rinnooy Kan, “Scheduling theory since 1981: an annotated
bibliography, ” Report No. BW 188/83, Mathematisch Cenhrum, Amsterdam, the

I Netherlands, 1983.

[13] Lenstra, J. K. and A. H. G. Rinnooy Kan, “New directions in scheduling theory,”
Operations Research Letters, Vol. 2, pp. 255-259, 1984.

[14] Liu, C. L. and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard
real-time environment,’’ Journal of ACM, VoI. 20, No. 1, pp. 46-61, January, 1973.

I 28

[15] Dhall, S. K. and C. L. Liu, “On a real-time scheduling problem,” Operations Research, Vol.
26, NO. 1, pp. 127-140, 1978.

[16] Leung, J. Y.-T. and M. L. Merrill, “A note on preemptive scheduling of periodic, real-time
tasks,” Information Processing Letters, Vol. 11, No. 3, pp. 115-118, November, 1980.

[17] Lawler, E. L. and C. U. Martel, “Scheduling periodically occurring tasks on multiple
processors,” Information Processing Letters, Vol. 12, No. 1, pp. 9-12, February, 1981.

[18] Leung, J. Y.-T. and J. Whitehead, “On the complexity of fixed-priority scheduling of
periodic, real-time tasks,” Performance Evaluation, Vol. 2, pp. 237-250, 1982.

[19] Liu, C. L., J. W. S. Liu and A. L. Liestman, “Scheduling with slack time,” Acta
Inforrnatica, Vol. 17, pp. 31-41, 1982.

[20] Bertossi, A. A. and M. A. Bonuccelli, “Preemptive scheduling of periodic jobs in uniform
multiprocessor systems,’’ Information Processing Letters, Vol. 16, pp. 3-6, January, 1983.

[21] Stankovic, J., K. Ramamritham, and S. Chang, “Evaluation of a flexible task scheduling
algorithm for distributed hard real-time systems,’’ IEEE Transactions on Computers, Vol.
C-34, No. 12, pp. 1130-1143, December, 1985.

[22] Zhao, W. and K. Ramamritham, “Distributed scheduling using bidding and focused
addressing,” Proceedings of IEEE Real-time Symposium, December, 1985.

[23] Leinbaugh, D. W. and M. Yamini, “Guaranteed response time in a distributed hard real-
time environment,” Proceedings of Real- Time Systems Symposium, pp. 157-169, December,
1982.

[24] Wensley, J. H., L. Lamport, J. Goldberg, M. W. Green, K. N. Levitt, P. M. Melliar-Smith,
R. E. Shostak, and C. B. Weinstock, “SIFT: Design and analysis of a fault-tolerant
computer for aircraft control,” Proceedings of the IEEE, Vol. 66, No. 10, pp. 1240-1255,
October, 1978.

[25] Garey, M. R. and D. S. Johnson, “Computers and intractability a guide to the theory of NP-
Completeness,” W. H. Freeman and Company, New York, 1979.

[26] Coffman, E. G. Jr., M. R. Garey, and D. S. Johnson, “An application of bin-packing to
multiprocessor scheduling,” SIAM J. Comput., Vol 7, No. 1, pp. 1-17, February, 1978.

29

BIBLIOGRAPHIC DATA 1- RePo= No. 2 3. Recipient's Accesaion No.
SHEET UIUCDCS-R-87-1307
1. Title and Subtitle 5. Repon Date

November, 1987 Scheduling Periodic Jobs Using Imprecise Results
I"

I t

r. Auchor(s)
Jen-Yao Chung, Jane W. S. Liu, Kwei-Jay Lin

P. Performing Organization Name and Address
Department of Computer Science
University of Illinois
1304 West Springfield

8. Performing Organization Rept.

10. Project/Task/Work Unit No.

No.

Urbana, Illinois 61801

Office of Naval Research
800 North Qunicy Road
Arlington, Virginia ,2221 7

I2 Sponsoring Org.niz8tioo Name and Address

16. Abatractr One approach to avoid timing faults in hard, real-time ay6tems b to make available intermediate,
imprech results produced by real-time procesres. When a result of the desired quality cannot be
produced in time, an imprecise mdt of acceptable quality produced before the deadline can be used.
Thb paper & u n a the problem of mcheduling periodic jobr to meet deadlines on a system that
providea the neem programming language primitives and run-time support for processes to return
impreciao rwults. Since the Khedder may choose to terminate a t v k before it is completed, causing it
to produce an acceptable but imprecbe reault, the amount of proceaoor time wigned to any task in a
valid schedule can be lesa than the amount of time required to complete the tvk . A meaningful
formulation of the scheduling problem must take into account the overall quality of the results.
Depending on the Merent types of undesirable effects caused by errors, jobr are classified as type N or
type C. For type N jobs, the effects of errors in results produced in diflerent periods are not
cumulative. A reasonable performance measure b the average error over dl jobr. Three heuristic
algorithms that l e d to feasible schedules with small werags errors are dwribed. For type C jobs, the
undesirable effects of errom produced in Merent perioda are cumulative. Scheddabilitj criteria of type

N W NO0014 87 K 0827
If Type of Report & Period

Covered

14

C jobs are diiuased.
7. Key Wordr and Document Afulysia. 170. Descriptor.

8. Availability Statement

Real-time systems
scheduling to meet deadlines
programming environment

21. NO. of Pages

22. Price

19.. Security Clara (This
Report)

Page
UNCLASSIFIED

7b. Identifiers/Opea-Ended Tenus '

